Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203811

RESUMO

Extracellular vesicles (EVs) have a significant impact on the pathophysiological processes associated with various diseases such as tumors, inflammation, and infection. They exhibit molecular, biochemical, and entry control characteristics similar to viral infections. Viruses, on the other hand, depend on host metabolic machineries to fulfill their biosynthetic requirements. Due to potential advantages such as biocompatibility, biodegradation, and efficient immune activation, EVs have emerged as potential therapeutic targets against the SARS-CoV-2 infection. Studies on COVID-19 patients have shown that they frequently have dysregulated lipid profiles, which are associated with an increased risk of severe repercussions. Lipid droplets (LDs) serve as organelles with significant roles in lipid metabolism and energy homeostasis as well as having a wide range of functions in infections. The down-modulation of lipids, such as sphingolipid ceramide and eicosanoids, or of the transcriptional factors involved in lipogenesis seem to inhibit the viral multiplication, suggesting their involvement in the virus replication and pathogenesis as well as highlighting their potential as targets for drug development. Hence, this review focuses on the role of modulation of lipid metabolism and EVs in the mechanism of immune system evasion during SARS-CoV-2 infection and explores the therapeutic potential of EVs as well as application for delivering therapeutic substances to mitigate viral infections.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Metabolismo dos Lipídeos , SARS-CoV-2 , Lipogênese
2.
Front Cell Infect Microbiol ; 13: 1102643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909724

RESUMO

Tuberculosis (TB) is an infectious disease caused by the bacteria of the Mycobaterium tuberculosis (Mtb) complex. The modulation of the lipid metabolism has been implicated in the immune response regulation, including the formation of lipid droplets (LD)s, LD-phagosome association and eicosanoid synthesis. Mtb, M. bovis BCG and other pathogenic mycobacteria, as well as wall components, such as LAM, can induce LDs formation in a mechanism involving surface receptors, for instance TLRs, CD36, CD14, CD11b/CD18 and others. In addition, the activation of the lipid-activated nuclear receptor PPARγ is involved in the mechanisms of LD biogenesis, as well as in the modulation of the synthesis of lipid mediators. In infected cells, LDs are sites of compartmentalized prostaglandin E2 synthesis involved in macrophage deactivation, bacterial replication and regulation of the host cytokine profile. LDs also have a function in vesicle traffic during infection. Rab7 and RILP, but not Rab5, are located on LDs of infected macrophages, suggesting that LDs and phagosomes could exchange essential proteins for phagosomal maturation, interfering in mycobacterial survival. The pharmacological inhibition of LDs biogenesis affects the bacterial replication and the synthesis of lipid mediators and cytokines, suggesting that LDs may be new targets for antimicrobial therapies. However, it is still controversial if the accumulation of LDs favors the mycobacterial survival acting as an escape mechanism, or promotes the host resistance to infection. Thus, in this mini-review we discuss recent advances in understanding the important role of LDs in the course of infections and the implications for the pathophysiology of mycobacteriosis.


Assuntos
Gotículas Lipídicas , Tuberculose , Humanos , Gotículas Lipídicas/metabolismo , Tuberculose/metabolismo , Macrófagos/microbiologia , Fagossomos/metabolismo , Metabolismo dos Lipídeos , Lipídeos
3.
Front Cell Infect Microbiol ; 11: 768124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778110

RESUMO

Chagas disease is a major public health problem, especially in the South and Central America region. Its incidence is related to poverty and presents a high rate of morbidity and mortality. The pathogenesis of Chagas disease is complex and involves many interactive pathways between the hosts and the Trypanosoma cruzi. Several factors have been implicated in parasite-host interactions, including molecules secreted by infected cells, lipid mediators and most recent, extracellular vesicles (EVs). The EVs of T. cruzi (EVsT) were reported for the first time in the epimastigote forms about 42 years ago. The EVsT are involved in paracrine communication during the infection and can have an important role in the inflammatory modulation and parasite escape mechanism. However, the mechanisms by which EVs employ their pathological effects are not yet understood. The EVsT seem to participate in the activation of macrophages via TLR2 triggering the production of cytokines and a range of other molecules, thus modulating the host immune response which promotes the parasite survival. Moreover, new insights have demonstrated that EVsT induce lipid body formation and PGE2 synthesis in macrophages. This phenomenon is followed by the inhibition of the synthesis of pro-inflammatory cytokines and antigen presentation, causing decreased parasitic molecules and allowing intracellular parasite survival. Therefore, this mini review aims to discuss the role of the EVs from T. cruzi as well as its involvement in the mechanisms that regulate the host immune response in the lipid metabolism and its significance for the Chagas disease pathophysiology.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunidade , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...